
to
od-
s the
MetaMap Technical
Notes

Alan R. Aronson

February 2, 1996

This document consists of a detailed description of MetaMap; it is based on theMetaMap Con-
version Specification, a guide for converting the current Prolog/C implementation of MetaMap
one entirely written in C. Section 1: Introduction gives a general description of the Prolog m
ules along with an example of MetaMap processing. Section 2: MetaMap Modules describe
modules in more detail.
1

1. Introduction

Map
1. Introduction

MetaMap processing is controlled by several Prolog modules shown in Figure 1. The Meta

MetaMap Front End
• Initialization and control

• Batch processing

• Interactive processing

MetaMap
• Initialization and control

• Evaluation

• Mapping construction

MetaMap Evaluation
• Control

• Match computation

• Evaluation function pro-
cessing

MetaMap Variants
• Control

• SPECIALIST Lexicon
access

• Morphological processing

• Acro/Abbr processing

MetaMap Candidates
• Control

• Candidate acquisition

• KSS access

MetaMap Utilities
• Control

• Support processing

Mincoman
• Tagged text processing

• Lexicon lookup processing

• Minimal commitment syn-
tactic processing

MetaMap Tokenization
• Phrase processing

• Input match processing

• Tokenization
MetaMap

SPECIALIST
Parser

Figure 1. High-level MetaMap Module Dependencies
MetaMap Technical Notes 2

1. Introduction

d. The
iant
btasks

ities
SPE-

llow-

g syn-
analy-
Front End module performs preliminary tasks such as reading an utterance to be processe
MetaMap module controls the mapping process which consists of four major subtasks: var
generation, candidate retrieval, candidate evaluation, and mapping construction. These su
are performed by the MetaMap Variants, MetaMap Candidates, MetaMap Evaluation and
MetaMap modules, respectively. Support for the entire effort is provided by the MetaMap Util
and MetaMap Tokenization modules. Finally, syntactic processing is provided by one of the
CIALIST parser modules, the Mincoman module.

Consider the utterance: “[HSR39.qu.1] Anti-gastroesophageal reflux implantation.” The fo
ing sections show the major steps in the processing of this utterance.

1.1 Preliminary processing

MetaMap processing begins with separating a label from the text of an utterance and readin
tactic tags for the text, if any (see Figure 2). The SPECIALIST parser produces a syntactic

Label:HSR39.qu.1

Text: “Anti-gastroesophageal reflux implantation.”

TagList: [[Anti,pre],
[-,hy],
[gastroesophageal,adj],
[reflux,adj],
[implantation,noun],
[.,pd]]

Figure 2. An utterance label, text and tagging
MetaMap Technical Notes 3

1. Introduction

inary

ally
 This

s that

tion

given

ed dur-
he input
sis (Figure 3) which is then augmented with tokens (Figure 4). The final stage in the prelim

processing consists of gleaning information from the augmented syntactic analysis, especi
finding the correspondence between the syntactic analysis and the words of the utterance.
produces Figure 5.1 See Section 2.2 for an explanation of this information.

1.2 Variant generation

The approach taken in computing variants is a canonicalization approach. This simply mean
a variant represents not only itself but all of its inflectional and spelling variants.2 Collapsing
inflectional and spelling variants results in significant computational savings. Variant genera
begins with findingmeaningful sequences of words from the input text. These sequences are
calledvariant generators. All individual words and all multi-word sequences occurring in the
SPECIALIST lexicon are meaningful. The variant generators for the example utterance are

1. A filteredversion of the phrase word information omitting prepositions, determiners and otherinsignificantwords
is not shown since it is the same in this case. Note that the filtered version of the phrase word information is us
ing the search for a mapping to the Metathesaurus, and the unfiltered version is used to coordinate results to t
text.

2. A spelling variant of a word is just a variant having the same principal part as the word. For example,haemor-
rhaged is a spelling variant ofhemorrhaged.

[not_in_lex([inputmatch([Anti])]),
punc([inputmatch([-])]),
mod([lexmatch([gastroesophageal reflux]),inputmatch([gastroesoph-

ageal,reflux])]),
head([lexmatch([implantation]),inputmatch([implantation])]),
punc([inputmatch([.])])]

Figure 3. The minimal commitment syntactic analysis

[not_in_lex([inputmatch([Anti]),tokens([anti])]),
punc([inputmatch([-]),tokens([])]),
mod([lexmatch([gastroesophageal reflux]),inputmatch([gastroe-

sophageal,reflux]),tokens([gastroesophageal,reflux])]),
head([lexmatch([implantation]),inputmatch([implanta-

tion]),tokens([implantation])]),
punc([inputmatch([.]),tokens([])])]

Figure 4. Syntactic analysis augmented with tokens

Phrase words:[anti,gastroesophageal,reflux,implantation]
Phrase head words:[implantation]
Syntax/word mapping (phrase map):[[1,1],[0,-1],[2,3],[4,4],[0,-1]]

Figure 5. Phrase word information
MetaMap Technical Notes 4

1. Introduction

yn-

g can-

 This
in Figure 6. For each of the generators, derivational variants, acronyms/abbreviations and s

onyms are computed producing the variants shown in Figure 7. In preparation for evaluatin

didate Metathesaurus strings, inflectional variants are computed for each of these variants.
final list of variants is shown in Figure 8.

v(anti,[],…
v(gastroesophageal reflux,[noun],…
v(gastroesophageal,[adj],…
v(reflux,[verb,noun,adj],…
v(implantation,[noun],…

Figure 6. Variant generators and their parts of speech

v(anti,[],0,[],…
v(gastroesophageal reflux,[noun],0,[],…
v(gastroesophageal,[adj],0,[],…
v(reflux,[verb,noun,adj],0,[],…
v(implantation,[noun],0,[],…
v(implant,[verb],3,”d”,…
v(implantable,[adj],6,”dd”,…

Figure 7. Variants and their parts of speech, variant distance and history

v(anti,[],0,[],anti,4)
v(gastroesophageal reflux,[noun],0,[],gastroesophageal reflux,3)
v(gastrooesophageal reflux,[],0,”p”,gastrooesophageal reflux,3)
v(gastroesophageal,[adj],0,[],gastroesophageal,3)
v(gastro-oesophageal,[],0,”p”,gastro esophageal,3)
v(reflux,[verb,noun,adj],0,[],reflux,2)
v(refluxed,[],1,”i”,reflux,2)
v(refluxes,[],1,”i”,reflux,2)
v(refluxing,[],1,”i”,reflux,2)
v(implantation,[noun],0,[],implantation,1)
v(implant,[verb],3,”d”,implant,1)
v(implantable,[adj],6,”dd”,implantable,1)
v(implantations,[],1,”i”,implantation,1)
v(implanted,[],4,”id”,implant,1)
v(implanting,[],4,”id”,implant,1)
v(implants,[],4,”id”,implant,1)

Figure 8. All variants
MetaMap Technical Notes 5

1. Introduction

 the
re 9.
1.3 Candidate retrieval

All Metathesaurus strings beginning with one of the variants in Figure 8 are retrieved using
MetaWordIndex module. Some of the 239 such strings for our example are displayed in Figu

Each example consists of the string’s tokens, the string itself, and the string’s concept.

csc([anti,3,4,diol,1,2,oxide,benz,a,anthracene],anti-3,4-diol 1,2-
oxide benz(a)anthracene,anti-3,4-diol 1,2-oxide
benz(a)anthracene)

csc([anti,5,methylchrysene,1,2,dihydrodiol,3,4,epoxide],anti-5-
methylchrysene-1,2-dihydrodiol-3,4-epoxide,anti-5-methylchry-
sene-1,2-dihydrodiol-3,4-epoxide)

csc([anti,a,carbohydrate,test],Anti-A-carbohydrate test,Anti-A-car-
bohydrate test)

csc([anti,a,cho,test],Anti-A-CHO test,Anti-A-carbohydrate test)
csc([anti,abortion,group],Anti-Abortion Group,Anti-Abortion Groups)
csc([gastroesophageal,reflux],GASTROESOPHAGEAL REFLUX,Gastroesoph-

ageal Reflux)
csc([gastroesophageal,reflux],Gastroesophageal Reflux,Gastroesoph-

ageal Reflux)
csc([gastro,esophageal,laceration,syndrome],Gastro-esophageal lac-

eration syndrome,Mallory-Weiss Syndrome)
csc([gastro,esophageal,reflux],Gastro Esophageal Reflux,Gastroe-

sophageal Reflux)
csc([reflux],Reflux, NOS,Reflux, NOS)
csc([reflux],reflux,Reflux, NOS)
csc([implant],Implant,Implant <1>)
csc([implant],Implant, NOS,Implantation, NOS <1>)
csc([implant],implant,Implants, Artificial)
csc([implantation],Implantation,Implantation, NOS <1>)
csc([implantation],Implantation,Ovum Implantation)

Figure 9. Metathesaurus candidates
MetaMap Technical Notes 6

1. Introduction

ure 10

 candi-
mantic
of the
havior
1.4 Candidate evaluation

Each of the Metathesaurus candidates is evaluated with respect to the text of the phrase. Fig

displays the results. Each result consists of the negation of the score for the candidate, the
date itself, the candidate’s corresponding concept, the candidate’s tokens, the concept’s se
types, the mapping from the phrase to the candidate, whether the mapping involves the head
phrase, and whether or not the match is an overmatch (always no here since the default be
prohibits overmatches).

ev(-812,Implantation,Implantation, NOS <1>,[implantation],[Thera-
peutic or Preventive Procedure], [[[4,4],[1,1],0]],yes,no)

ev(-812,Implantation,Ovum Implantation,[implantation],[Organism
Function], [[[4,4],[1,1],0]],yes,no)

ev(-741,Implant,Implant <1>,[implant],[Medical
Device],[[[4,4],[1,1],3]],yes,no)

ev(-741,implant,Implants, Artificial,[implant],[Medical
Device],[[[4,4],[1,1],3]],yes,no)

ev(-729,Implanted,Implanted,[implanted],[Functional Con-
cept],[[[4,4],[1,1],4]],yes,no)

ev(-729,Implants,Implants <1>,[implants],[Biomedical or Dental
Material], [[[4,4],[1,1],4]],yes,no)

ev(-729,Implants,Implants <2>,[implants],[Medical
Device],[[[4,4],[1,1],4]],yes,no)

ev(-694,GASTRO-OESOPHAGEAL REFLUX,Gastroesophageal Reflux,[gas-
tro,oesophageal,reflux],[Disease or Syndrome],
[[[2,2],[1,2],0],[[3,3],[3,3],0]],no,no)

ev(-694,GASTROESOPHAGEAL REFLUX,Gastroesophageal Reflux,[gastroe-
sophageal,reflux],[Disease or Syndrome],
[[[2,3],[1,2],0]],no,no)

ev(-645,Reflux, NOS,Reflux, NOS,[reflux],[Finding,Sign or Symptom],
[[[3,3],[1,1],0]],no,no)

Figure 10. Candidate evaluations
MetaMap Technical Notes 7

1. Introduction

g as
re 11.
1.5 Mapping construction

The final step in MetaMap consists of combining candidates to form as complete a mappin
possible. The best mappings for the example, both with final scores of 840, are given in Figu

map(-840,[ev(-694,GASTRO-OESOPHAGEAL REFLUX,Gastroesophageal
Reflux,[gastro,oesophageal,reflux],[Disease or
Syndrome],[[[2,2],[1,2],0],[[3,3],[3,3],0]],no,no),

ev(-812,Implantation,Implantation, NOS <1>,[implantation],
[Therapeutic or Preventive Procedure],
[[[4,4],[1,1],0]],yes,no)])

map(-840,[ev(-694,GASTRO-OESOPHAGEAL REFLUX,Gastroesophageal
Reflux,[gastro,oesophageal,reflux],[Disease or
Syndrome],[[[2,2],[1,2],0],[[3,3],[3,3],0]],no,no),

ev(-812,Implantation,Ovum Implantation,[implantation],
[Organism Function],[[[4,4],[1,1],0]],yes,no)])

Figure 11. The best mappings for “Anti-gastroesophageal reflux implantation.”
MetaMap Technical Notes 8

2. MetaMap Modules

n

low-

en-

ates,
po-

nt of

,

nd 3,
on-

all
 in this
nd
2. MetaMap Modules

This section describes the main tasks for each of the MetaMap modules.

2.1 MetaMap Front End Module (metamap_fe)

The purpose ofmetamap_fe is to process text interactively or in batch mode, with or without
tagging, to the point wheremetamap:metamap_phrase/6 can be called. This has already bee
sufficiently exemplified in Figure 2 and Figure 3.

2.2 MetaMap Module (metamap)

metamap is MetaMap’s main source of control. Normal processing consists of calls to the fol
ing predicates:

• metamap_tokenization:add_tokens_to_phrase/2. The syntactic analysis produced
by the Mincoman module often contains multi-word items, e.g.,gastroesophageal reflux.1 Uni-
form treatment of what constitutes a “word” argues for tokenizing multi-word items. The tok
ization algorithm used is the same as that ofwordind . The tokens forgastroesophageal reflux
are simplygastroesophageal andreflux. See Figure 4 above for a full example.

• metamap_tokenization:parse_phrase_word_info/2. Based on the tokens just com-
puted and in further preparation for computing variants and finding Metathesaurus candid
parse_phrase_word_info/2 determines the correspondence between the syntactic com
nents and the tokens of the phrase. This is shown pictorially in Figure 12. The first eleme

the syntax (simplified for exposition),not_in_lex(anti) corresponds to the first token, [1,1]
denoted by word span beginning and ending at word 1. The second syntactic element,punc(-) ,
corresponds to no tokens, denoted by [0,-1]. The third element corresponds to tokens 2 a
[2,3]; the fourth corresponds to word 4, [4,4]; and the last corresponds to nothing, [0,-1]. C
catenating these correspondences produces themapping from syntax to tokens: [[1,1], [0,-1],
[2,3], [4,4], [0,-1]]. Besides the mapping, parse_phrase_word_info/2 computes the list of
tokens, [anti, gastroesophageal, reflux, implantation], and a lowercase version (the same
case2); the list of head tokens, [implantation], and a lowercase version (again the same); a

1. The reason for this is that the SPECIALIST lexicon contains multi-word entries.

1. not_in_lex(anti)

2. punc(-)

3. mod(gastroesophageal reflux)

4. head(implantation)

5. punc(.)

1. anti

2. gastroesophageal
3. reflux

4. implantation

Syntax Tokens

Figure 12. Syntax/Token correspondence
MetaMap Technical Notes 9

2. MetaMap Modules

. For
word

m-
. The
14. A

the
ord),

he
ght-
t), its

 are

order
m), a
another analysis as above computed by filtering out the tokens of non-meaningful syntactic
components, i.e., those with tags prep, det, aux, modal, compl, punc, num, conj and pron
our example the filtered version is the same as the unfiltered version. The actual phrase
information for the example is shown in Figure 13.

• metamap:compute_evaluations/3. compute_evaluations/3 is a control predicate
which invokes six predicates which successively compute variant generators, variants the
selves, Metathesaurus candidates for the variants, and the evaluations of the candidates
resulting information is stored in several data structures (Prolog terms) defined in Figure

GVC structure consists of a variant generator (which is, itself, a variant), its variants, and
Metathesaurus candidates for the variants. A variant consists of a Word (possibly a multi-w
its syntactic Categories, its variation distance (VarLevel) and History1 from the corresponding
phrase word, its canonical form (BasifiedWord), and the right-to-left count of the word in t
phrase (NFR). This count is used to restrict search to the 1- and 2-word indexes for the ri
most two words in the phrase. A candidate consists of a Metathesaurus string (StringTex

2. Actually, in the current implementation all tokens are lowercased; so the lowercase versions of tokens lists
always redundant.

1. A variant’s history is a string of characters (displayed in reverse order) indicating the variation steps taken in
to produce the variant. The characters are p (spelling variant), i (inflection), d (derivational variant), s (synony
(acronym/abbreviation), and x (an acronym/abbreviation expansion). A generator’s history is the null string.

pwi(wdl([anti,gastroesophageal,reflux,implantation],
[anti,gastroesophageal,reflux,implantation]),

wdl([implantation],[implantation])
[[1,1],[0,-1],[2,3],[4,4],[0,-1]])

:
pwi(wdl([anti,gastroesophageal,reflux,implantation],

[anti,gastroesophageal,reflux,implantation]),
wdl([implantation],[implantation]),
[[1,1],[0,-1],[2,3],[4,4],[0,-1]])

Figure 13. Phrase word information

GVC (Generator/Variants/Candidates):gvc/3
gvc(Generator, Variants, Candidates)

Variant:v/6
v(Word, Categories, VarLevel, History, BasifiedWord, NFR)

[canonical algorithm]

Candidate:csc/3
csc(CanonicalText, StringText, ConceptText)

Evaluation:ev/8
ev(NegValue, MetaTerm, MetaConcept, MetaWords, SemTypes,

MatchMap, InvolvesHead, IsOvermatch)

Figure 14. Definitions of GVC, Variant, Candidate and Evaluation
MetaMap Technical Notes 10

2. MetaMap Modules

se of

urus

ad of
. Note

names
e

.e.,

are in

their

int are

gs, all
ve

by

bove.

.5.
 with

ted.
andi-
concept (ConceptText), and the list of tokens in the string (CanonicalText). Note that the u
the wordcanonicalhere is historical; it is completelyunrelatedto the notion ofcanonical form.
An evaluation consists of the negation of the evaluation value (NegValue), the Metathesa
string (MetaTerm), its concept (MetaConcept), its tokens (MetaWords), its semantic types
(SemTypes), the mapping to the phrase (MatchMap), whether the mapping involves the he
the phrase (InvolvesHead) and whether or not the mapping is an overmatch (IsOvermatch)
that MetaTerm is the same as StringText in the candidate structurecsc/3 , MetaConcept is the
same as ConceptText, and MetaWords is the same as CanonicalText. The duplication of
is kept in order to facilitate examination of the code. The six predicates which compute th
information in these structures are as follows:

• metamap_variants:compute_variant_generators_canon/2. The search for Meta-
thesaurus strings related to the phrase begins by examining the filtered phrase words, i
those words of the phrase with ameaningful syntactic category. The phrase words for our
example areanti, gastroesophageal, reflux, andimplantation. The variant generators for the
phrase consist of each of the individual words and all subsequences of the words which
the SPECIALIST lexicon. In this case, only one subsequence,gastroesophageal reflux, is in
the lexicon. It becomes the fifth variant generator for our example. Figure 6 above shows
internal structure.

• metamap_variants:augment_each_with_variants_canon/1. The variants for each
of the variant generators is computed according to an algorithm described below in
Section 2.3. Figure 7 above shows the results. Note that the variants computed at this po
used for searching the Metathesaurus for strings which match the phrase.

• metamap_variants:gather_variants_canon/1. For use in determining the variant
distance between phrase words and the variants that will be found in Metathesaurus strin
inflectional variants of the variants computed above are gathered together. Figure 8 abo
shows all variants for our example.

• metamap_candidates:add_candidates_canon/3. The MetaWordIndex module is
used to find all Metathesaurus strings containing at least one of the variants computed
augment_each_with_variants_canon/1 . The algorithm for doing this is discussed in
Section 2.4 below, and some of the 239 results for our example are shown in Figure 9 a

• metamap_evaluation:evaluate_candidates/10. Each of the 239 candidates found
above is evaluated according to a four-part evaluation metric defined below in Section 2
Part of the default evaluation process involves filtering out overmatches and candidates
gaps. For example, all 196 candidates beginning withanti (e.g., “Anti Rheumatic Agents” and
“anti-liver kidney microsome antibody”) are overmatches and are not completely evalua
The default behavior can be overridden, but this explains why only thirteen of the 239 c
MetaMap Technical Notes 11

2. MetaMap Modules

s

ple,
t”
ns are
d the

s
ta-

eneral
or the
only
dates (see Figure 15) are fully evaluated. Note that variables occur where semantic type

would normally appear since they have not been computed yet.
• metamap:filter_out_redundant_evaluations/2. This is the last of the six predi-

cates invoked bycompute_evaluations/3 . It simply filters out evaluations for which there
is a higher scoring evaluation involving the same concept (but different strings). For exam
the concept “Implantation, NOS” has strings “Implantation”, “Implantations” and “Implan
with evaluation scores of 812, 779 and 741, respectively. The second and third evaluatio
redundant and thus filtered out. All redundant evaluations are highlighted in Figure 15, an
filtered evaluations (with semantic types) are shown in Figure 10.

• metamap:construct_best_mappings/5. MetaMap’s last task is to choose combination
of the evaluated candidates in order to produce the best mappings from the phrase to Me
thesaurus concepts. In the simplest cases, a single concept maps the entire phrase. In g
candidates associated with disjoint parts of the phrase are combined, and an evaluation f
combination is computed just as for individual candidates. The default behavior is to report
the highest scoring mappings.

ev(-812,Implantation,Implantation, NOS <1>,[implantation],_701987,
[[[4,4],[1,1],0]],yes,no)

ev(-812,Implantation,Ovum Implantation,[implantation],_702163,
[[[4,4],[1,1],0]],yes,no)

ev(-779,Implantations,Implantation, NOS <1>,[implantations],
_702339,[[[4,4],[1,1],1]],yes,no)

ev(-779,Implantations,Ovum Implantation,[implantations],_702515,
[[[4,4],[1,1],1]],yes,no)

ev(-741,Implant,Implant <1>,[implant],_701459,
[[[4,4],[1,1],3]],yes,no)

ev(-741,Implant, NOS,Implantation, NOS <1>,[implant],_701635,
[[[4,4],[1,1],3]],yes,no)

ev(-741,implant,Implants, Artificial,[implant],_701811,
[[[4,4],[1,1],3]],yes,no)

ev(-729,Implanted,Implanted,[implanted],_702691,
[[[4,4],[1,1],4]],yes,no)

ev(-729,Implants,Implants <1>,[implants],_702867,
[[[4,4],[1,1],4]],yes,no)

ev(-729,Implants,Implants <2>,[implants],_703043,
[[[4,4],[1,1],4]],yes,no)

ev(-694,GASTRO-OESOPHAGEAL REFLUX,Gastroesophageal Reflux,[gas-
tro,oesophageal,reflux],_700538,
[[[2,2],[1,2],0],[[3,3],[3,3],0]],no,no)

ev(-694,GASTROESOPHAGEAL REFLUX,Gastroesophageal Reflux,[gastroe-
sophageal,reflux],_699985,[[[2,3],[1,2],0]],no,no)

ev(-645,Reflux, NOS,Reflux, NOS,[reflux],_701096,
[[[3,3],[1,1],0]],no,no)

Figure 15. Pre-filtered candidate evaluations
MetaMap Technical Notes 12

2. MetaMap Modules

f

egins
bulk
each
2.3 MetaMap Variants Module (metamap_variants)

metamap_variants computes variants of phrase words for later use as keys for retrieval o

Metathesaurus candidates. The algorithm is shown graphically in Figure 16. The algorithm b
by computing variantgeneratorsfor the phrase being processed (see Section 1.2 above). The
of the algorithm consists of sequentially computing the following sets of variants. Note that
of the sets has a corresponding designation in Figure 16.

• G—a generator;

• GDs—the derivational variants of G;

• GDSs—the synonyms of GDs;

• GAAs—the acronyms/abbreviations of G;

• GAADs—the derivational variants of GAAs;

• GAADSs—the synonyms of GAADs;

• GSs—the synonyms of G;

• GSDs—the derivational variants of GSs;

• GSDSs—the synonyms of GSDs;

• GAASs—the synonyms of GAAs; and

• GSAAs—the acronyms/abbreviations of GSs.

Figure 16. Variant generation

Acronyms/
Abbreviations

Synonyms

Synonyms+
Derivational

Variants

Synonyms+
Derivational

Variants

Synonyms+
Derivational

Variants

Generator

Acronyms/
Abbreviations

Synonyms
MetaMap Technical Notes 13

2. MetaMap Modules

se.

ta-
d ver-

ngs or

f

 dis-

and
the

nized
L

ts of

ng
ds

is-
nents

eta-
n-
2.4 MetaMap Candidates Module (metamap_candidates)

metamap_candidates retrieves Metathesaurus strings as candidates for mapping the phra
The process is conceptually simple. Each variant generated bymetamap_variants is tokenized
into canonical form. The first canonical form is used as a key to theword_index module to
retrieve all Metathesaurus strings beginning with the form,1 and the remaining canonical forms (if
any) are used to filter out strings which do not contain the entire variant. Each retrieved Me
thesaurus string is returned along with its associated concept and an uninverted, lowercase
sion of itself. If the control optionstop_large_n is set (the default),metamap_candidates
does not search single-character variants which begin more than 1,000 Metathesaurus stri
two-character variants which begin more than 500 strings.

2.5 MetaMap Evaluation Module (metamap_evaluation)

The candidate evaluation process is described in section 5 ofMetamap: Mapping Text to the
UMLS® Metathesaurus®. The information needed to apply the evaluation function consists o

• basic variant information for all variants of the phrase words;

• amatchmap, a mapping of phrase words to Metathesaurus string words along with variant
tance information;

• an indication of whether the mapping involves the head of the phrase or not; and

• the connected components of the mapping.

The variant information is stored in an AVL tree where keys are the first words of the variants
values arevinfo/5 terms consisting of the variant’s generator, the position of the generator in
phrase, whether the variant involves the head of the phrase, the variant itself, and the toke
words of the variant (the first of which is the key for finding the variant). The first several AV
entries are shown in Figure 17. The second entry is for the variantgastro-oesophageal which is a
spelling variant (“p”) of the generatorgastroesophageal. It has variant distance 0, it matches the
second word ([2,2]) of the phrase, is the third phrase word counting from the right, it consis
wordsgastro andoesophageal, and is indexed undergastro.

An example will illustrate the remaining information needed by the evaluation function. The
example phrase we have been using consists of the four words [anti, gastroesophageal, reflux,
implantation] only one of which (implantation) is a head word. Consider the Metathesaurus stri
“GASTRO-OESOPHAGEAL REFLUX” (with concept “Gastroesophageal Reflux”). The wor
for the string are [gastro, oesophageal, reflux]. Its matchmap is [[[2,2],[1,2],0], [[3,3],[3,3],0]]
which means that the second word ([2,2])gastroesophageal of the phrase maps to the first two
words ([1,2])gastro oesophagealof the string, and the third word ([3,3])refluxof the phrase maps
to the third word ([3,3])reflux of the string. In addition, both of these maps involve a variant d
tance of 0. The mapping does not involve the head. Finally, the mapping’s connected compo

1. The canonicalization algorithm assumes that overmatches and concept gaps are not allowed. Thus any M
thesaurus string which can be used to map the phrasemustbegin with one of the variants in the phrase, and the cano
icalization versions of indexes used by theword_index module only index on the canonical form of thefirst words
of the strings.
MetaMap Technical Notes 14

2. MetaMap Modules

com-
ents
are [[2], [3]] meaning that two consecutive wordsgastroesophageal reflux of the phrase map to
three consecutive wordsgasrto oesophageal reflux of the string.

Details of the computation follow. The evaluation function is a weighted average of several
ponents with different weightings for normal processing and term processing. The compon
which comprise the function are

• centrality (does the candidate involve the most important part of the phrase, the head?);

• variation (how much to the variants in the candidate differ from the phrase words?);

• coverage (how much of the phrase does the candidate cover?);

• cohesiveness (how smoothly does the candidate cover the phrase?); and

anti →vinfo: v(anti,[],0,[],anti,4)
[1,1],no
v(anti,[],0,[],anti,4)
[anti]

gastro →vinfo: v(gastroesophageal,[adj],0,[],gastroesophageal,3)
[2,2],no
v(gastro-oesophageal,[],0,”p”,gastro-oesophageal,3)
[gastro,oesophageal]

gastroesophageal →vinfo: v(gastroesophageal,[adj],0,[],gastroesophageal,3)
[2,2],no
v(gastroesophageal,[adj],0,[],…,3)
[gastroesophageal]

vinfo:v(gastroesophageal reflux,[noun],0,[],…,3)
[2,3],no
v(gastroesophageal reflux,[noun],0,[],…,3)
[gastroesophageal,reflux]

gastrooesophageal →vinfo:v(gastroesophageal reflux,[noun],0,[],…,3)
[2,3],no
v(gastrooesophageal reflux,[],0,”p”,…,3)
[gastrooesophageal,reflux]

implant →vinfo: v(implantation,[noun],0,[],implantation,1)
[4,4],yes
v(implant,[verb],3,”d”,implant,1)
[implant]

implantable →vinfo:v(implantation,[noun],0,[],implantation,1)
[4,4],yes
v(implantable,[adj],6,”dd”,implantable,1)
[implantable]

implantation →vinfo: v(implantation,[noun],0,[],implantation,1)
[4,4],yes
v(implantation,[noun],0,[],implantation,1)
[implantation]

implantations →vinfo: v(implantation,[noun],0,[],implantation,1)
[4,4],yes
v(implantations,[],1,”i”,implantation,1)
[implantations]

…

Figure 17. Variant information used in evaluation
MetaMap Technical Notes 15

2. MetaMap Modules

uch of

pro-

ss

tion
nent.
itua-
 sub-

nsists
GAS-

soph-

nce
riant of
tion
• involvement (an alternative to coverage and cohesiveness answering the question how m
the phrase is involved in the match?).

The evaluation function for normal processing is shown in Figure 18. The function for term

cessing is given in Figure 19. Note that theglobalevaluation components (coverage, cohesivene

and involvement) receive twice the weight as thelocal components (centrality and variation).
Also, the evaluation function for term processing is obtained from the normal evaluation func
by replacing both the coverage and cohesiveness components with the involvement compo
The less demanding involvement component seems to produce better results in browsing s
tions implied by term processing. The evaluation components are described in the following
sections. Note that the definitions inMetamap: Mapping Text to the UMLS® Metathesaurus®
suffice for all of the components except involvement. Consequently, the discussion below co
mainly of a detailed example. The example consists of evaluating the Metathesaurus string “
TRO-OESOPHAGEAL REFLUX” for the phraseAnti-gastroesophageal reflux implantation.The
basic information needed to compute the evaluation value is contained in Figure 20.

2.5.1 Centrality (CenValue)
The centrality value is 0 since the two-part mapping from [gastroesophageal] to [gastro, oe
ageal] and from [reflux] to [reflux] does not involve the head, [implantation].

2.5.2 Variation (VarValue)
Variation scores are computed for each part of the mapping. In this case, the variation dista
between [gastroesophageal] and [gastro, oesophageal] is 0 since the latter is a spelling va
the former. Thus the variation score for the first part of the mapping is 1 (4/(0+4)). The varia

Value = integer(1000*[(CenValue + VarValue + 2.0*(CovValue + CohValue))/6.0])

Figure 18. Normal Evaluation Function

Value = integer(1000*[(CenValue + VarValue + 4.0*InvValue)/6.0])

Figure 19. Evaluation Function for Term Processing

• Phrase:Anti-gastroesophageal reflux implantation.

• Phrase words: [anti, gastroesophageal, reflux, implantation]

• Phrase head words: [implantation]

• Metathesaurus string: “GASTRO-OESOPHAGEAL REFLUX”

• Meta words: [gastro, oesophageal, reflux]

• The matchmap: [[[2,2],[1,2],0], [[3,3],[3,3],0]]

Figure 20. Information Needed for Evaluation
MetaMap Technical Notes 16

2. MetaMap Modules

cond

nd for
e. The
atch-
ilarly,
in the
al cov-

hrase
 compo-
alue for
geal,

3 +

 The
 the

, the
nvolve-
value

 the

]

atio.
orma-
bines
score for the second part of the mapping is also 1 since there is no variation at all in the se
part ([reflux]). Since the average of 1 and 1 is 1, the final variation value is 1.

2.5.3 Coverage (CovValue)
In order to compute the coverage value, we compute the individual values for the phrase a
Meta, and then average them weighting the Meta value twice as heavily as the phrase valu
phrase has 4 words and a phrase span of 2 (since word 2 is the first word involved in the m
map and word 3 is the last word). Thus the coverage value for the phrase is 2/4 or 1/2. Sim
there are 3 Meta words, and the Meta span is 3 (since the first and last Meta words involved
matchmap are 1 and 3, respectively). Thus the coverage value for Meta is 3/3 or 1. The fin
erage value is the weighted average (1*(1/2) + 2*(1))/3 or 0.83.

2.5.4 Cohesiveness (CohValue)
In order to compute the cohesiveness value, we again compute the individual values for the p
and for Meta, and then average them in the same way. The phrase has a single connected
nent [gastroesophageal, reflux] of size 2. Since the phrase has 4 words, the cohesiveness v
the phrase is 22/42 or 1/4. Similarly, Meta has a single connected component [gastro, oesopha
reflux] of size 3. The cohesiveness value for Meta, then, is 32/32 or 1. The final cohesiveness value
is the weighted average (1*(1/4) + 2*(1))/3 or 0.75.

According to Figure 18, the final value for normal evaluation is integer(1000*[(0 + 1 + 2*(0.8
0.75))/6.0]) or 694.

2.5.5 Involvement (InvValue)
The involvement value is a rough approximation of the coverage and cohesiveness values.
strict word order implied by the matchmap is no longer followed. The involvement value for
phrase is the proportion of phrase words whichcan map to a Meta word whether or not they do
according to the matchmap. For example, given the phraseAdvanced cancer of the lung with
words [advanced, cancer, lung] and the Meta string “Lung Cancer” with words [lung, cancer]
matchmap maps lung to lung, but does not map cancer because of word order. The phrase i
ment value here is 2/3 as opposed to the coverage value of 1/3. Similarly, the involvement
for the Meta string is the proportion of words whichcan be mapped to from the phrase. For the
current example, the Meta involvement value is 2/2 or 1 rather than 1/2 for coverage. Thus
final involvement value for this example is the weighted average (2/3 + 1)/2 or 0.83.1

2.6 MetaMap Utilities Module (metamap_utilities)

2.6.1 MatchMap predicates
• positions_overlap/2 —determines if two positions overlap. For example, [2,3] and [3,4

do overlap and [2,3] and [4,4] do not.

• correct_components/2 , correct_component/2 —corrects terms of the form [m,n]
which write_term/2 sometimes garbles on output. For example,[9,10] is written as the six

1. Note that the weighting of phrase involvement and Meta involvement is equal rather than the normal 1:2 r
Although the involvement value could be computed as implied by the definition, MetaMap actually uses the inf
tion contained in the matchmap, finds the extra Meta words relevant to the involvement computation, and com
this information to compute the involvement value.
MetaMap Technical Notes 17

2. MetaMap Modules

ters

the

g

hown
characters“^I^J” . When the erroneous output is read back in, it is a string of four charac
rather than a list of two integers. These predicates correct the problem.

2.6.2 Text manipulation predicates
• eliminate_multiple_meaning_designator/2 ,

eliminate_multiple_meaning_designator_string/2 —strip <n> from an atom or
string. For example, ‘Implant <1>’ becomes ‘Implant’.

2.6.3 I/O predicates
• show_simple_syntax/3 —simply displays the text of the phrase rather than the results of

parser.

• get_phrase_text/4 —performs the extraction of theinputmatch information from a parse
for show_simple_syntax/3 .

• get_utterance/3 , get_phrases/2 —reads previously output MetaMap results consistin
of oneutterance/2 term, one or morephrase/2 , candidates/1 andmappings/1 terms,
and one‘EOU’/1 term from a file.

• dump_aphrase_mappings/2, print_mappings/3, dump_evaluations/2 ,
dump_evaluations_indented/2, print_evaluations/3 ,
print_evaluations_indented/3 , dump_variants_labelled/2 —These predicates
display what their names indicate. The difference between thedump_… predicates and the
print_… predicates is that theprint_… predicates take an additional stream argument.

2.6.4 Miscellaneous predicates
• dump_time/3 —displays timing information associated with the--dump_timing option.

• wgvcs/1 —writes a list of GVCs.

• wl/1 —writes a list.

• write_avl_list/1 —writes an AVL list.

2.7 MetaMap Tokenization Module (metamap_tokenization)

2.7.1 Syntactic analysis predicates
• generate_syntactic_analysis/2 , generate_syntactic_analysis/3 —produce a

syntactic analysis from possibly tagged text. They simply call
qp_token:tokenize_string/2 , qp_lookup:assembledefns/2 ,
generate_varinfo:generate_variant_info/2 , andminco-
man:minimal_commitment_analysis/5 .

2.7.2 Phrase processing predicates
• add_tokens_to_phrase/2 —adds atokens/1 feature to each element of a parse. The

tokens are computed by applyingtokenize_all_text_more_lc/2 to thelexmatch/1 fea-
ture (or theinputmatch/1 feature if there is nolexmatch/1 feature). The example parse
before and after calling add_tokens_to_phrase/2 is shown in Figure 3 and Figure 4.

• parse_phrase_word_info/2 , parse_phrase_word_info/9 —compute phrase words,
phrase head words and a mapping from syntactic components to phrase words. This is s
MetaMap Technical Notes 18

2. MetaMap Modules

di-

d

a
ich
n are

syntac-
od
informally for the example in Figure 5 and Figure 12 and formally in Figure 13. These pre
cates useextract_tokens/3 andfilter_tokens/3 which are similar to
extract_input_match/4 andfilter_input_match/4 (see below).

• create_word_list/2 —creates awdl/2 term with first argument a list of words and secon
argument the lowercase version of the words.

• extract_input_matches/5 , extract_input_match/4 , filter_input_match/4 —
extract filtered (usingfilter_input_match/4) or unfiltered (using
extract_input_match/4) inputmatch/1 features from a parse. They produce not only
list of words but also a list of head words from the parse. A filtered extraction is one in wh
input matches with a syntactic tag of prep, det, aux, modal, compl, punc, num, conj and pro
ignored.

• linearize_phrase/4 , linearize_components/2 , linearize_component/2 —split
multi-word phrase items into single-word items in preparation for resolving the parse with
mapped Metathesaurus strings. Linearization is needed since mapping does not respect
tic boundaries. Figure 21 shows the linearization for the example. Note that the original m

phrase item has been split into two mod phrase items each containing one of thetokens/1 gas-
troesophageal andreflux. All other features have been replicated.

2.7.3 Phrase access predicates
• get_phrase_item_feature/3 , get_phrase_item_name/2 ,

get_phrase_item_subitems/2 , new_phrase_item/3 , get_subitems_feature/3 ,
get_subitem_name/2 , get_subitem_value/2 , set_phrase_item_feature/4 ,

Original syntax:
[not_in_lex([inputmatch([Anti]),tokens([anti])]),
punc([inputmatch([-]),tokens([])]),
mod([lexmatch([gastroesophageal reflux]),inputmatch([gastroe-

sophageal,reflux]), tokens([gastroesophageal,reflux])]),
head([lexmatch([implantation]),inputmatch([implanta-

tion]),tokens([implantation])]),
punc([inputmatch([.]),tokens([])])]

Original phrase map: [[1,1],[0,-1],[2,3],[4,4],[0,-1]]
Linearized syntax:

[not_in_lex([inputmatch([Anti]),tokens([anti])]),
punc([inputmatch([-]),tokens([])]),
mod([lexmatch([gastroesophageal reflux]),inputmatch([gastroe-

sophageal,reflux]), tokens([gastroesophageal])]),
mod([lexmatch([gastroesophageal reflux]),inputmatch([gastroe-

sophageal,reflux]), tokens([reflux])]),
head([lexmatch([implantation]),inputmatch([implanta-

tion]),tokens([implantation])]),
punc([inputmatch([.]),tokens([])])]

Linearized phrase map: [[1],[0],[2],[3],[4],[0]]

Figure 21. A linearized phrase
MetaMap Technical Notes 19

2. MetaMap Modules

ed

ts,

e

les

m.
,

 |
set_subitems_feature/4 —manipulate phrase items and their subparts which are defin
in Figure 22.

2.7.4 Tokenization predicates
• parse_multi_word_into_words/2 —parses a single multi-word atom into a list of atoms

by callingnls_text:normalized_syntactic_uninvert_text/2 and
metamap_tokenization:tokenize_text_lc/2 . It parses ‘Gastro-esophageal reflux’ into
[gastro, esophageal, reflux], ‘Implantation, NOS <1>’ into [implantation, ‘<1>’], and ‘Implan
Artificial’ into [artificial, implants].

• tokenize_all_text/2 , tokenize_text/2 , tokenize_all_text_lc/2 ,
tokenize_text_lc/2 —tokenize text which can be either an atom or a string. Results ar
lists of atoms or strings depending on the input type.…_all_… predicates process lists of text,
and…_lc predicates produce lowercase results.tokenize_text/2 tokenizes by breaking at
spaces and hyphens and by ignoring colons. The results of applying it to the three examp
above are [‘Gastro’, esophageal, reflux], [‘Implantation,’, ‘NOS’, ‘<1>’], and [‘Implants,’,
‘Artificial’].

• tokenize_all_text_more/2 , tokenize_text_more/2 ,
tokenize_all_text_more_lc/2 , tokenize_text_more_lc/2 —tokenize text similarly
to thetokenize_text/2 family above except that the tokenization is the wordind algorith
The results of applyingtokenize_text_more/2 to the three examples above are [‘Gastro’
esophageal, reflux], [‘Implantation’, ‘NOS’, ‘1’], and [‘Implants’, ‘Artificial’].

• tokenize_all_text_completely/2 , tokenize_text_completely/2 ,
tokenize_all_text_completely_lc/2 , tokenize_text_completely_lc/2 —also
tokenize text similarly to thetokenize_text/2 family above except that all punctuation is
isolated and kept. The results of applyingtokenize_text_completely/2 to the three
examples above are [‘Gastro’, ‘-’, ‘esophageal’, ‘reflux’], [‘Implantation’, ‘,’, ‘NOS’, ‘<‘, ‘1’,
‘>’], and [‘Implants’, ‘,’, ‘Artificial’].

 PhraseItem ::= <tag>(<SubItemList>)

SubItemList ::= <list> of <SubItem>

SubItem ::= <unary term> (e.g., inputmatch/1, lexmatch/1, tokens/1, …)

Tag ::= adv | aux | compl | conj | det | error | ing | mod | modal | no_tag | not_in_lex | num
pastpart | pre | prep | pron | punc | shapes | verb | <tagger tokenizer tag>

Figure 22. Definition of PhraseItem
MetaMap Technical Notes 20

